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Synopsis 
A method to obt,ain the diffusion coefficients and free volume parameters from de- 

sorption data for organic liquids in polymer films is presented. The method c0nsist.s 
of fit,ting a numerical solution of the diffusion equation to experimental desorption data. 
Some problems that arise in the solution of the diffusion equat,ion are discussed and 
results for a benzene-polyet,hylene system are presented. 

INTRODUCTION 
It is well known in the literature that the diffusion coefficients in polymers 

of gases or liquids which interact and swell the polymer are functions of the 
concentration of the diffusing molecules. The use of time-lag or permea- 
tion experiments yields only the concentration-average diffusion coeffi- 
cients. For certain analysis, it is desirable to obtain the diffusion coeffi- 
cient and its functional relationship with the concentration of the diffusing 
molecules in the polymer. One method by which it is possible to obtain 
the diffusion coefficient-concentration dependence is by the analysis of 
absorption data. describes several methods to perform this 
analysis. 

An alternate way to obtain the concentration dependence of the diffusion 
coefficient is based on the use of desorption data. McCal13 has developed 
a numerical procedure to analyze desorption data. However, his procedure 
is limited to cases where the diffusion coefficient can be integrated analyt- 
ically with respect to concentration. The free volume theory of diffusion4 
has been extended to polymeric systems by Fujita.6 It provides a fairly 
reasonable explanation of the concentration dependence of the diffusion 
coefficient. The basic idea in the free volume approach is that the mo- 
bilities of both the polymer segment and the diffusing molecule in a poly- 
mer-diluent system are primarily determined by the amount of free volume 
present in the system. 

The purpose of the present study is to develop a method based on de- 
sorption data, in order to obtain the diffusion coefficient and its concentra- 
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tion dependence when this relationship cannot be integrated analytically. 
This method consists of fitting a numerical solution of the diffusion equa- 
tion to experimental data and the application of the free volume theory of 
diffusion to estimate free volume parameters. Numerical procedures and 
results for the system benzene-polyethylene are presented. 

THEORY 

Diffusion Equation 

The diffusion equation will now be set up for the diffusion of a substance 
through a polymer sheet. As the area of the face is much greater than 
that of the edges, diffusion normal to the edges will be neglected. The 
equation will be developed taking into account, the fact that the polymer 
sheet swells with the addition of tthe penetrant. The nomenclature will 
be that used by Bird et nL6 

Fick’s law of diffusion is 

.ia = -P&VW, (1) 
where& is the mass flux of component a relative to the mass average velocity 
u; p is the density of the system; w, is the mass fraction of component a; 
V is the del operator, in this case a/ax since other derivatives are neglectted 
for the case of a “thin” sheet. 

By writing the diffusion equation with respect to an axis which moves 
with the polymer component, and doing a mass balance, the following is 
obtained : 

where pa is the concentration of component a, per unit volume of the sys- 
tem; t is time; x is the distance along which diffusion takes place; and 
Dan is the diffusion coefficient of a with respect to b .  

Up to now, the equation is general, the only assumption being that there 
is no diffusion in the y and z directions (through the edges). However, in 
its present form, the diffusion equation cannot be solved because of the 
presence of the density term p. This term is a function of x because of the 
fact tJhat the polymer swell? when penetrant dissolves and contracts when 
penetrant diffuses out. At, zero conccntration, the density is that of the 
pure polymer, but upon absorption of a liquid, the density will change. 
Thus, information is required about the density change with composition 
of the system. With the systems studied, this information is difficult to 
obtain, and in its absence it will be assumed that, the volumes of the pene- 
trant a and the polymer b are additive. This assumption is a good one 
for many polymer-liquid systems. For example, McCall and Slichter? 
report for polyethylene a solubility and swelling factor in n-hexane of 12.6 
wt-% and 14%, respectively, and in benzene of 17.2 wt-% and IS%, re- 
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spectively. With their data and the assumption of additive volume, a 
swelling factor for n-hexane and benzene can be calculated as 16% and lS%, 
respectively, which is close to the experimental values. Bent and Pinskys 
report a comparison between the additive volume assumption and the per 
cent increase in volume actually measured for numerous organic liquid- 
polyethylene systems. Their data indicate that the assumption is fairly 
accurate. For example, at  70°F with benzene, the additive volume calcula- 
tion yields a 16% increase in volume, whereas the experimental values 
range from 15.2%-17.2%. 

Mathematically, the additive volume assumption can be expressed as 

V ,  = (mass of A) X Van + (mass of B)  X Vbo (3) 
where V z  is the total volume of the system; and Van, V b ”  are the specific 
volumes of pure A and B, respectively. With this assumption, the diffu- 
sion equation, eq. (2 ) ,  can be written as 

In more familiar notation this is 

b”, ?(A?) 
dt dx (1 - v,) dx (5)  

where u p  is the volume fraction of the penetrant. 
The film is symmetrical about its center axis for the purposes of diffusion, 

the x = 0 coordinate has bceri taken through the center of the film, with 
the faces across which diffusion takes place at  x = +l. The boundary 
conditions are as follows : At the start of the desorption, the concentration 
of the penetrant throughout the film is the same and equal to the equilibrium 
concentration C ” .  The second boundary condition imposed is usually to re- 
quire that concentration be zero at x = 1 and x = -1 for all time, except at  
t = 0. Certain mathematical problems which arise as a result of this as- 
sumption will be dealt with in the discussion of results. 

Free Volume Theory for the Dependence of the 
Diffusion Coefficient on Concentration 

Fujita5 has extended the free volume theory of diffusion to account for the 
dependence of the diffusion coefficient on the concentration of the diffusing 
substance in polymers. The free volume is analogous to the “hole” which is 
opened up by thermal fluctuations of the polymer chains and is expressed as 
a fraction of the total volume of the system. The main points of the theory 
will be discussed, along with the final working equations. 

The mobility of a species is assumed to be given by 

md = Adexp(-Bdf) (6) 
where md is the mobility of a species, Bd is an arbitrary parameter correspond- 
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ing to the minimum “hole” required for a diffusional displacement, A ,  is a 
constant, and f is the fractional free volume. From the definition of the 
molar mobility, we have 

DT = RTmd (7) 
where DT is the thermodynamic diffusion coeficient. The free volume of 
the system is a function of the temperature and the concentration of the 
diffusing species and is assumed to be given by 

f(v,,T) = f(O,T) + P(T)V, (8) 

where f(v,,T) is the fractional free volume of the system at  temperature T 
and concentration up of the diffusing species, f(0,T) is the fractional free 
volume of the polymer itself, and P(T) is a proportionality constant relating 
the amount of free volume increase by the diffusing species. When v, = 1, 
the free volume is that of the pure permeant, and for u p  = 0, the diffusion 
coefficient D,= is given by 

(9) 

Combining eq. (6) with eq. (9) leads to the final expression for thc thermo- 
dynamic diffusion coefficient : 

Dc=o = ETAd exp{ -Bd/./‘(O,T) 1 

(10) U P  

[S(O,T’) I2/IBdP(?7) 1 + [F(O,T) /Bd]vp  
- J% 

I11 ~ - 
D,=, 

The thermodynamic diffusion coefficient DT can be related to D,, by 

Da0 b In u p  L>,= ___- 
(1 - v,) b ln up 

where a, is the activity of the penetrant. 

trant to the activity. 
polymers can be described in terms of the Flory-Huggins theoryg: 

There are various theories which relate the volume fraction of the pene- 
The activity of the penetrant imbibed in amorphous 

(1 2a) 111 up = 111 up  + (1 - v,) + x(l - u , ) ~  

and 

where x is the Flory-Huggins interaction parameter. Although x is a func- 
tion of temperature and concentration, for many systems it lies between 0.3 
and 0.8. For instance, Barrer and Fergusson’O report values of x ranging 
from 0.68 to 0.90 for benzene and polyethylene. Frensdorff” obtained 
values of x of benzene and n-hexane in a polyethylene-polypropylene co- 
polymer of 0.65 and 0.3, respectively. The computations carried out in the 
present work indicated that changes of 0.2 in the Flory-Huggins interaction 
parameter x rewlted in onIy u 10% change in the thermodynamic diffusion 
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coefficient. The sensitivity of 
the computed free volume parameters to changes in x are shown in the Ap- 
pendix. Michaels and Hausslein12 have used the Flory-Rehner equation to 
relate the activity of the penetrant to its volume fraction in crystalline 
polymers. An additional term was introduced to account for the enhanced 
activity of the penetrant resulting from contributions from the elastically de- 
formed network (see Appendix). However, in the present work, it is as- 
sumed that this additional term can be neglected. Details showing the nu- 
merical implications of this simplifying assumption are given in the Appen- 
dix. Fujita5 shows that the "hole" parameter Bd can be interpreted as the 
ratio of the activation energy for diffusion at  zero concentration to that of 
the activation energy of viscosity of the polymer itself. Williams et aZ.l3 

predict that the free volume of the polymer a t  its glass transition tempera- 
ture is 0.025 and that it increases linearly with temperature a t  the rate of 4.8 
X 10-4per "C. 

Therefore, a value of 0.5 was chosen for x. 

Numerical Method for Solving the Diffusion Equation 

The final form of the equation which is to be solved by numerical tech- 
niques is 

bc - = - b [(I - u p ) 2 e x p [ A ]  g] 
bt bx a -I- bu,  

where a is [,f(0,T)]2/BdB(T) and b is f(O,T)/B,. 
written in dimensionless form by following the substitutions: 

Equation (13) can be 

C' = c/co = vp/vo 
where V" is the equilibrium volume fraction of the liquid in the polymer. 

2' = x / l  

t' = D,,ot/P 

Ahking these substitutions, and performing the differentiation, one ob- 
tains : 

where A is [f(0,T)]2/(Bd,~(T)Vo) and B is f(O,T)/Bd. The partial dif- 
ferential equation, eq. (14), is then resolved into a series of 10 ordinary dif- 
ferential equations by dividing one-half of the membrane into 10 equal parts 
of width Ax' and writing: 
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and 

b2C’ 
bX’2 (Ax’) 

C‘,+l - 2C’, + ci-1 _ _ -  - 

Substitution into eq. (14) yields: 

- 2 4  
- -  bC’, C’j ( 1  - V”C’,)A 

( A  + Be’,)’ bt’ - ( l  - v”c’i) exp [ A  + B C ‘ ]  [{ 
(C’j+l - 2C’i + C’j-1) 

 AX')^ 
’ }  + (1 - VOC’j) 

C‘,+12 - 2C’,+1 C‘j+l = ct-1 
4(Ax’)2 

(17) 
This equation is valid when i = 2 to 10. 
eq. (17) becomes 

For the special case when i = 1, 

(18) 
C’1 C’2 - C’l 

{ A  + BC‘]  AX')^ ’ 
__ = 2(1 - V°C‘l)exp 
dC‘1 
bt’ 

These ten differential equations are then solved using a 4th-order Runge- 
Kutta procedure as outlined in Ralston and Wilf.14 The results of the solu- 
tion are, for given values of A and B, ten concentrations for values of time 
t‘. The amount of liquid in the polymer at time t’ is then calculated by 
numerical integration of the concentration profile. The integrated 
amounts QI(t’) can then be compared to the experimental values from de- 
sorption data and the parameters A and B can be changed so as to minimize 
the difference between the calculated and experimental amounts. 

EXPERIMENTAL 

Apparatus 

The equipment used to measure desorption consisted of a Cahn Electro- 
balance, manufactured by Cahn Instrument Co., Paramount, California. 
The balance portion is an electromagnetic arrangement and beam pivoted a t  
the center. At one end of the beam is a small metal flag which serves to 
intercept a light beam to a photocell circuit. If the beam is unbalanced by 
a slight amount, more or less light than the amount reaching the photocell a t  
null point is sensed and an electric current flows in the electromagnet to  re- 
balance the beam. The amount of current necessary to keep the beam 
balanced is directly proportional to the difference in weight a t  the two ends. 
This current is then converted to a 0-1 mV signal which is then recorded. 
The complete curve for weight versus time in the desorption process can thus 
be conveniently obtained. 

The entire balance is placed in a glass bottle, 5 in. in diameter and 12 in. 
long. An aluminum plafe through which the connecting wires are passed 
covers one end of the bottle. Two glass tapered-joint hangdowri tubes are 
attached to the bottle, one surrounding the sample and the other surround- 
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ing the counterweights. A third tube is attached to the bottle so that the 
whole apparatus and sample may be placed under vacuum. The sample 
and counterweights are suspended on the balance by fine nichrome wires. 
The sample hangdown tube is surrounded by a circular Plexiglas tube 
through which water is circulated to keep the temperature constant. 
Vacuum is maintained by a Welch vacuum pump of 75 l./min capacity and 
the recorder used is a 1-mV full-scale Sargent three-speed model, having a 
10-in. chart span. 

The balance is calibrated with standardized weights and is theoretically 
sensitive to lo-’ g. In the experiments for this study, the amount desorbed 
was about 100 mg and the most sensitive range used was 1 mg full scale. 
Accuracy was limited by the mass dial on the instrument to about *O.l mg. 

Experimental Procedure 

The samples used for the desorption studies were approximately 1.5 cm X 
6 cm and 10 mil (0.025 cm) thick. The weight of the sample was approxi- 
mately 250 mg. A small hole was cut in the top of each sample for suspen- 
sion on the balance. Prior to the desorption run, the polymer sample was 
immersed in the liquid to be desorbed until it had absorbed the equilibrium 
amount. This was accomplished by hanging the film in the liquid in a 
jacketed glass flask. Water maintained at the temperature of desorption 
was circulated through the jacket. 

Before a run was started, the balance was first calibrated with the stan- 
dardized weights. After sufficient time had been allowed for equilibrium 
absorption to take place, the sample was removed from the bath and hung 
on the balance. The sample hangdown tube was then fitted on the balance. 
The vacuum was turned on and the recorder was started. The time taken 
between the removal of the sample from the liquid and the start of recording 
the desorption was approximately 10 sec. The desorption was allowed to 
proceed until there was no significant weight decrease. This varied from 3 
to 45 hr, depending OIL the system being studied. 

Calculations 

After each duplicate set of runs, the recorder chart data was digitized by 
taking about 200 points along the time axis and the corresponding ordinater. 
The values of Q(t)  for each of these points were then calculated. The 
equilibrium amount absorbed, Q(O), was calculated from the difference be- 
tween the initial and final weights of the sample. Then In[Q(t)/Q(O)] was 
plotted against time for both runs. If there were significant discrepancies 
between the two runs, the run was repeated. I t  was found that discrepan- 
cies could arise from improper zero-time definition or from failure in remov- 
ing the surface liquid from the sample before starting the desorption. The 
slope at long times was obtained by fitting a straight line subjectively to 
about the last ten points of the curve for computing D,=,. McCal13 has 
shown that this slope is equal to - D,=, d / W .  
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To fit the solution of the differential equations, eqs. (17) and (18), the fol- 
lowing procedure was used. A starting value of the parameters A and B 
was taken; QI( t )  was then calculated and the square of the difference be- 
tween QI( t )  and Q(t)  was obtained and integrated over the time axis. This 
integrated error was then minimized by changing A and B. The search 
procedure to minimize the error consisted of fixing A and varying B until a 
5% change in B produced a minimum error. The process was repeated 
with a new A .  Reiteration of this scheme was continued until A and B 
were accurate to within 5%. These calculations were carried out on the 
IBRl360/75 computer a t  the Computing Center, University of Waterloo. 

DISCUSSION 

Numerical Solution of the Diffusion Equation 

The numerical solution of the diffusion equation as outlined above posed 
some problems for the case of desorption of liquid from a film. These diffi! 
culties stemmed from the fact that the diffusion coefficient is an increasing 
function of the concentration of the diffusing species. Interestingly 
enough, similar difficulties do not arise when an absorption process is con- 
sidered. If the diffusion coefficient, in general, is written 

Da1, = Dc=of(c>, (19) 

then the diffusion equation in the x-direction becomes 

I n  this equation, [aj(c)]/bc and (b~)~ / (bz )  are always positive whether de- 
sorption or absorption is considered. However, in the case of desorption, 
azc/&xz is negative, and &/at is also negative. Thus for desorption, if the 
first term on the right-hand side is greater numerically than the second term, 
bc/dt will be positive. This is physically incorrect for a desorption process. 
Since all of the terms are positive for absorption, the problem does not arise 
for this case. In  other words, even though a given model of the diffusion 
coefficient does result in the solution of the diffusion equation for absorption, 
it may be impossible to solve the equation for the desorption case. 

For the free volume model of the diffusion coefficient used in this study, 
the equations for the numerical solution appear as eqs. (17) and (18). In  
order to start the solution, the boundary conditions at the start and the con- 
centration at  the face of the membrane (.’ = 1) must also be known. The 
first is straightforward and is 

C’(0,z’) = 1. (21) 
If, for the second boundary condition, one assumes that the concentration of 
the liquid is zero on the faces for all times greater than zero time, the nine 
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values of X”i/bt’ given by eqs. (17) and (18) will be zero a t  t’ = t’ + 6t’; 
bC‘le/bt’ in this case will be given by 

- 2VOI - (1 - VO)) 
dC‘10 1 ‘1 (1 - VO)A 

A + B 4 ( A  + B)2 
bt’ = (1 - vo) exp (-}{- [ 

Examination of eq. (22) shows that if 

1 (1 - V’)A 
4 ( A  + B)2 

bC’lo/bt’ becomes positive, resulting 
There is no physical reason why the 

+ 0.5 V1 > 1, 

in an impossible physical situation. 
inequality should not occur, and cer- 

tainly the values of the parameters should not depend on whether the pro- 
cess is one of absorption or desorption. 

In  the present work, this difficulty was avoided by the use of a variable 
boundary condition in setting the value of the concentration at  the surface 
of the film. Instead of this concentration being zero for all times except 
zero time, an exponential relation was assumed of the form 

C’(1,t’) = exp(-kt’) (23) 

where k is a constant for a given desorption run. In this form the liquid 
concentration at  the surface would decrease relatively quickly from the 
initial equilibrium value to 0. The value of k was chosen by matching the 
rate of desorption with the rate that the vacuum pump could maintain at  

mm Hg, about 50 l./min. The time t o  for which 50 l./min was being 
desorbed was found and the product kto was set equal to 15. Then k could 
be found and used in eq. (23) above. It required from 20 to 40 min for this 
condition to be achieved. 

On examination of eq. (20), it is apparent that for absorption, the absolute 
value of bc/bt will be larger than for desorption. The result of this is that a 
numerical solution will proceed much faster if absorption is being con- 
sidered. Therefore, the numerical solution of the diffusion equation for the 
desorption case requires an extremely fast computer. In the present study, 
it required approximately 1 min of computing time on the IBM 360/75 to 
solve the equations for one value of the parameters A and B. 

Another consideration which was found to be very important in the solu- 
tion of the diffusion equation was the question of stability. Amesl5 shows 
that the solution is stable if D , ~ A ~ ’ / ( A X ’ ) ~  is less than 0.5 for linear differ- 
ential equations. In  the present study, the value of DaoAt’/ (Ax’)2 was set 
equal to 0.3, and it was found that no stability problems were encountered 
with this criterion. The accuracy of the solution was checked by compar- 
ing the solution with t’ calculated from DaoAt ’ / (Ad)2  = 0.3 and solutions 
with the stability criterion set a t  0.15. Results shown in Table I indicate 
that the uEe of 0.3 for the stability criterion is sufficiently accurate. 
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Calculation of Free Volume Parameters 

As mentioned before, the parameters A and B in eq. (14) were evaluated 
by minimizing the difference between the solution of the diffusion equation 
and the actual data obtained in the desorption runs. It was found that A 
and B could be estimated to within about 5%. In order to calculate the 
free volume parametersf(O,T), /3(T), and Bd, one more equation iS required. 
The one which was used was the expression for the free volume of the pure 
liquid, 

The difference in the free volume of the pure liquid at  temperatures TI and 
Tz is equal to the volumetric expansion of the liquid times the temperature 
difference. 

The parameter Bd can thus be calculated between various temperatures. 
Theoretically, Bd is not a function of temperature. Although the results of 
the present work indicate variation with temperature, it is felt that the data 
are not accurate enough to assume that Bd is temperature dependent. As 
an approximation of Bd, the average of the values at  the four temperatures 
was taken and assumed to remain constant. With these values of Bd, the 
free volume fraction at  zero concentration f(0,T) and P(T) were calculated. 
An example of the free volume parameters and related diffusion data for 
benzene in polyethylene at  25°C is shown in Table 11. Further numerical 
results and discussion of these parameters will be reported separately. 

TABLE I1 
Free Volume Parameters for Benzene-Polyethylene System at 25°C 

Parameter Value Unik 

0.106 
0.072 

0.1483 
0.0174 
0.0796 
0.241 

1.25 x 10-8 cm2/sec 

CONCLUSIONS 

The method presented here of obtaining diffusion coefficient data for 
organic liquids in polymers yields sufficiently accurate values of the free 
volume parameters. The major disadvantage is the large amount of com- 
puter time required for solution of the diffusion equation. In subsequent 
papers16J7 it will be shown that a knowledge of the values of the free volume 
parameters enables one to make quantitative interpretations of the effect of 
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polymer modification and mixture composition on transport properties of 
organic liquid mixtures in polymer membranes. 

APPENDIX 

Examination of the Effect of Introducing Simplifying 
Assumptions in Evaluating the Term (b  In a,)/@ In D,) 

(a) In eq. (12), the term (b In a,)/@ In u p )  has been equated to (1 - u p )  
(1 - 2x u p )  arid a value of 0.5 was set for x. Strictly speaking, x is not con- 
stant, but! it will be shown below that this assumption does riot lead to 
significant errors in the calculated numerical values of the free volume 
parameters A and B. 

The effect of a change in b In a,/a In v, can be compared to the effect of 
changes in A and R, by differentiation of 

b In a, 
where F = ~. 

b In v, 

(25)  

For (uP/V1)  = 1, it can be seen from the above 3 equations that 

0 P' bF 
bA bB ( A  + B)'' 

Typical values of A and B are about 0.1 and O.OS, respectively, therefore 
bF/bA = 31. Since A is accurate to about *0.005, this would imply that 
F need be accurate to *0.00.5 (31) = +0.15. 

(b) llichaels and Hausslein'* have used the Flory-Rehner equation to 
relate the activity of the permeant to its volume fraction in a crystalliIic 
polymer: 

1 - - _ -  - - 

In a, = In v, + (1 - u p )  + x (1 (29) 

where V1 is the molar volume of the permeant. The final term in eq. (29) 
was introduced to account for the enhanced activity of the penetrant result- 
ing from the cryst,allinity. 



DIFFUSION COEFFICIENTS OF LIQUIDS 535 

b In a p  
b In u p  

The expression for __ now becomes 

(30) b In ap V P  ___- - (1 - v,) (1 - 2x21,) - K 
b In u p  3(1 - v~)*’~ 

To test the effect of an error in, and of leaving out the final term to ac- 
count for the recrystallinity, eq. (30) can be differentiated with respect to x 
and K as follows: 

bF 
- = (1 - v,) (- 2 4 .  
dX 

For u p  = 0.15, a typical value, b F / b x  = 0.255. 

&0.15/0.255 = 3~0.6. 
crystallinity can be seen similarly by differentiating F with respect to K: 

Previously it has been shown that bF can be *0.15. Thus bx can be 
The effect of omitting the term to account for the 

VP - b F  
dK 3(1 - v,)”~’ 
_ -  

For v p  = 0.15, b F / b K  = 0.056. Therefore, as dF can be f0.15, bK can be 
f0.15/0.056 = f 2.7. Referring to the results of Michaels and Hausslein, 
it is now possible to calculate an approximate value of K .  

Values of up to about 0.90 are reported for the term [((a)o f p V1)/Mc] 
[(l  - v~)”~]. This value is for polyethylene having a weight fraction of 
0.031 xylene. Using this data, it can be estimated that K would be about 
0.66 and 0.98 for benzene and bhexane, respectively. Since these values 
are considerably smaller than 2.7, it can be concluded that the omission of 
the term to account for the effect of the crystallinity on activity does not 
significantly affect the results of the present study. 
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